
Chapter 6 Lecture Notes
The Standard Deviation as a Ruler

and the Normal Model

Comparing quantitative variables

A student gets a 67/75 on exam 1 and a 64/75 on exam
2, but is told she did better on the second exam relative
to the class. How can this be?

• Both sets of exam scores exhibit variation.
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Shifting Data
We Shift Data by...

A shift from men’s actual weights in kilograms (LEFT)
to kilograms above recommended weight (RIGHT)

(a)Actual Weight (b) Shifted Weight
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Rescaling Data
We Re-scale Data by...

Rescaling from weight in kilograms (LEFT) to weight in
pounds (RIGHT).
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How do we standardize observations
We can compare individual data values to their mean,
relative to their standard deviation by

z =
y − ȳ

s
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Example
A student gets a 67/75 on exam 1 and a 64/75 on exam
2, but is told she did better on the second exam relative
to the class. Below is a summary of the class performance
on each exam.

• Exam 1

–Mean: ȳ = 59.5

– Standard Deviation: s = 8.61

• Exam 2

–Mean: ȳ = 50.1

– Standard Deviation: s = 11.86

How did the student perform with respect to the class on
each exam?
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When is a z-score BIG?

• There is no universal standard for z-scores, but we can
use theNormal Model to provide a measure on how
extreme a z-score is.
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The Normal Distribution is characterized by the following
two parameters:
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• Notation: to denote the normal distribution we use

Example:

denotes a normal distribution with mean
and standard deviation , while denotes a
normal distribution with mean and standard de-
viation .

• To denote that a variable (e.g. heights, SAT scores,
etc.) follows a normal distribution we write
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The 68-95-99.7 Rule

For a variable that follows a , we
have that
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Example: The length of human pregnancies follows a
normal distribution with mean µ = 266 days and a stan-
dard deviation of σ = 16 days.

1. How long do the middle 95% of all pregnancies last?

2. How long do the shortest 16% of all pregnancies last
(at most)?

3. How long do the longest 0.15% of all pregnancies last
(at least)?
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Example: The Standford-Binet Intelligence Quotient
(IQ) Test, is a test used to measure a person’s general
intelligence. The IQ test is designed to so participants’
scores follow a normal distribution with mean µ = 100
and a standard deviation of σ = 16.

1. Identify the range of IQ scores for the central 68% of
the population.

2. What percentage of people have an IQ below 52?

3. What percentage of people have an IQ above 116?

12



Standard Normal Distribution
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Standard Normal distribution

For the standard normal distribution, the proportion

of observations falling into a specified range is tabu-
lated.
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Knowing the mean and the standard deviation of a nor-
mal distribution allows us to determine

We can standardize any given normal distribution to a
standard normal distribution using

z =
y − µ

σ
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Finding z-scores and corresponding propor-
tions/areas under the normal curve
Why are z-scores helpful?

• IQ’s follow a normal distribution with mean µ = 100
and standard deviation σ = 16

• heights of males follow approx. a normal distribution
with mean µ = 70 inches and σ = 3

Who is more unusual? — A man being 73 inches tall or
a man having an IQ of 124?
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Normal Values table
Once we know the corresponding z-score of an observa-
tion we can look up the overall proportion (percentage)
of men in that population having a height of 73 inches or
more.

⇒ need to know how to read Table Z (Table of the Stan-
dard Normal Distribution)

⇒ Table Z in Appendix D

Note, in the following the terms proportion, probability,
percentage, and area are all interchangeable, i.e.

proportion = probability = percentage = area
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We can find the area to the left of z = 1.80 using Table Z.

using table a to find proportions under
the normal curve

consider the following situations:

1. What proportion of observations is below z = −1.67,
i.e. what is the probability of observing a z-score of
-1.67 or less?
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2. What proportion is below z = 1.67?

3. What proportion of observations is greater than z =
1.67?

4. What proportion is less than z = −2.00 and greater
than z = 2.00?
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Backwards Calculations

We can also work backwards — given a certain percentile
(or proportion), what is the corresponding value of y?

Example: What z-score represents the first quartile in
the Normal model?
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1. What z-score does the 30th percentile correspond to?

2. What z-scores bound the middle 60%?
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Applications of the Normal Distribution

1. State the problem, i.e. state the mean µ, the standard
deviation σ and the value of the observation y

2. draw picture, i.e. shade area of interest under curve.

3. To calculate the proportion of observations falling in
a certain region

(a) standardize y, i.e. find the corresponding z-score

(b) use Table A to find the shaded area

4. To calculate a data value corresponding to a given
percentile

(a) Find the z-score corresponding to given percentile
in Table A

(b) Convert the z-score to a data value with y = z∗σ+µ
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Examples — Male Heights ∼ N(70, 3).

What percent of men are shorter than 66 inches?

What value corresponds to the median?

What percent of men are taller than 74 inches?
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What percent of men are between 68 and 71 inches tall?

What value corresponds to Q1?

What value corresponds to Q3?
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Checking Normality of Data

• In general it is quite risky to assume normality with-
out looking at the data and verifying normality
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• Histograms

• Boxplots/5 Number Summaries
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• Normal Probability Plot
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Cannot use the Normal Model.
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Should use the Normal Model.
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