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Abstract

We consider a model for generating a random graph using the configuration
model. In the configuration model, each node draws a degree independently
from a marginal degreed distribution and endpoints pair randomly. We
establish non-trivial bounds on the expected sizes of “buckets” for large
graphs. We define nodes i and j in a graph as neighbors if they share an
edge, and we define the “bucket” associated with node i as the set of nodes
that are its neighbors and have degree greater than node i. We formalize
this argument by providing an analysis for the expected number of items
and pairs in a “bucket” for arbitrarily specified degree distributions, which
include power laws.
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1 Introduction

Many situations can be modeled using networks (or equivalently, graphs).
The world wide web, social networks, and genomic aberrations are just a
few examples. While the focus in most cases is on networks with only a
single edge between two nodes, there are cases where multiple edges can
exist between two nodes. Webpages with multiple links between each other
are a very common case. Occasionally there may be a node with an edge
connecting it to itself (called a self-loop). Webpages are also a common
source of self-loops. Go to www.apple.com to see an example of all three
different types of links (edges).

Recently there has been an interest in an ability to make sound statisti-
cal inferences about features of a network as well as the network itself. The
features that are most commonly of interest are the community structure
within the network as well as shapes made by the edges, such as trian-
gles. This requires properly modeling a joint distribution for the network
as well as the marginal distributions of the features of network. Erdős and
Rényi (1959) were the first to provide a joint distribution for a random
graph by modeling the edges between each node as independent bernoulli
events. However, this model is inappropriate for most applications as most
of the degree distribution observed in real world networks appear to be best
modeled by a power law distribution. Networks exhibiting power law degree
distributions are referred to as scale-free networks [Dorogovtsev and Mendes
(2002)]. Consequently there is a need for a more flexible method of modeling
both joint and marginal distributions.

Many alternatives to the Erdös Rényi random graph have been pre-
sented, most attempting to address the scale-free behavior. Specifically,
most real world networks are thought to be best modeled with heavy tailed
power law degree distributions having an exponent 2 < β < 3. Barabási and
Albert (1999) suggested the “preferential attachment” model and showed
that the degree distribution asymptotically follows a power law distribution.
Watts and Strogatz (1998) studied the behavior of graphs upon rewiring
as the probability of connecting to other nodes in the graph was varied.
Under certain conditions a scale free behavior was observed. One of the
most flexible mechanisms for generating graphs is the configuration model,
as originally studied by Bender and Canfield (1978) and Wormold (1978).
The configuration model generates undirected random graphs according to
an arbitrary specified degree distribution, including power laws. Edges are
randomly paired with every pairing equally likely, including self-loops and
multi-edges, so that the resulting graph may not be simple.
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The enumeration of triangles in a network, also known as node counting,
is an important part of many algorithms analyzing clustering and neighbor-
hoods within complex networks [Latapy (2008)]. The motivation for devel-
oping efficient node counting algorithms is the ubiquity of measures such as
the clustering coefficient [Albert and Barabási (2002)] and the transitivity
ratio, which are considered to be useful descriptors of large networks. Berry
et al. (2009) require the the number of triangles to compute edge weights in
their work improving the resolution limits (ability to detect both small and
large communities) of community detection algorithms. While the applica-
tion to computing edge weights is just one specific example, it was the node
counting algorithm used with this application that provided the motivation
for this analysis. The method for listing triangles is by giving each node
a “bucket” where each edge in the graph is placed into the bucket of its
endpoint of lowest degree. Pairs of edges in each bucket are then checked
for connecting edges which complete a triangle. Cohen (2009) developed
this algorithm and showed that it enumerates the number of triangles in a
graph.

To understand the performance of Cohen’s method for listing triangles,
(which impacts the computational efficacy of community detection algo-
rithms for example) it becomes of interest to quantify both the size and
number of pairs which might be expected of a typical bucket in a large ran-
dom graph. Using the configuration model as the graph generating mech-
anism, we show that the expected size of a “bucket” is finite provided the
degree distribution has a finite first moment. We further show the expected
number of pairs in a bucket to be finite provided the degree distribution has
a finite 4/3 moment. That is, Cohen’s triangle listing algorithm will scale
linearly provided the degree distribution has a finite 4/3 moment.

2 The Results

In this section, a class of random graphs is described and, for these, a non-
trivial bound on the expected sizes of “buckets” in large graphs is estab-
lished. A non-trivial bound on the expected number of pairs of nodes in
a bucket is established as well under mild conditions. Random graphs are
generated using the configuration model which allows for the degree distri-
butions to be quite arbitrarily specified and include power laws in particular.

Consider a graph with n nodes, where the degree of the ith node is Di,
i = 1, . . . , n. Suppose the collection of degrees D1, . . . , Dn are independent
and identically distributed. The common distribution, which is described in
terms of D1 in the following (without loss of generality), follows a discrete
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probability mass function

f(d) = P(D1 = d), integer d ∈ [`,∞), (1)

where ` is a nonnegative integer (a parameter) which may be specified in the
model (e.g., ` = 1). A degree distribution must be specified subject to the
usual probability constraint

∑∞
d=` f(d) = 1. To obtain a bounded degree

distribution, assume f(d) = 0, d > u for some selected upper bound u ≥ `.
After generating degrees D1, . . . , Dn for the nodes, the system is in a

state where the ith node hasDi stubs or half-edges. Assuming Sn =
∑n

i=1Di

is even, the Sn stubs are then randomly paired, with every “pairing config-
uration” assumed to be equally likely. If Sn is odd, we randomly pick one
integer I from {1, . . . , n}, replace DI with DI + 1, and perform pairing. For
odd Sn, this additional randomization step has little influence on overall
probability structure of individual nodes in large graphs (n → ∞). This
graph generation does allow multigraphs in that self-loops are possible as
well as multiple edges with neighboring nodes.

Nodes i and j are defined to be neighbors if they share at least one edge
in the graph. Fix an arbitrary node i among the n nodes of the graph and
define a “bucket”

Bi,n = {j : i 6= j,Di ≤ Dj ,node i and node j are neighbors},

which corresponds to the set of all neighbors of node i having degree at least
as great as that of node i. Let Ni,n = |Bi,n| be the size of the bucket for
node i in a size n graph. The number of possible node pairs that can be
formed from nodes in the bucket Bi,n is(

Ni,n

2

)
=
Ni,n(Ni,n − 1)

2
.

To show the “bucket” algorithm is an effective node counting algorithm, it
is necessary to evaluate the expected value

(Ni,n

2

)
as the number of nodes

n → ∞. Letting E represent the expectation operator, the expected value
is denoted as E

(Ni,n

2

)
. Under a mild moment condition on the degree distri-

bution, an explicit expression for

lim
n→∞

E
(
Ni,n

2

)
is provided and nontrivially shown to be finite. Additionally, the limiting
form of expected bucket size ENi,n is provided.
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To state the result, recall that the rth moment, r > 0, of the degree
distribution is given by EDr

1 =
∑∞

d=` d
rf(d) and, in particular, ED1 =∑∞

d=` df(d) is the expected value or mean of the degree distribution.

Theorem 1 Under the above mechanism for generating random graphs,
suppose ` ≥ 1 in the degree distribution (1).
(i) If ED1 <∞, then as n→∞,

ENi,n →
1

ED1

∞∑
d1=`

∞∑
d2=d1

d1d2 f(d1)f(d2) <∞

(ii) If ED4/3
1 <∞, then as n→∞,

E
(
Ni,n

2

)
→1

2

∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

f(d1)f(d2)f(d3)
d1d2

ED1

(d1 − 1)d3

ED1
<∞.

To frame the results in Theorem 1, note that the bucket size Ni,n of node
i (a function of the graph size n) is always bounded by the degree Di + 1
of node i plus one (not depending on n and potentially incremented by 1 in
the act of random wiring); that is, Ni,n ≤ Di + 1. Consequently, it follows
that

lim sup
n→∞

E
(
Ni,n

2

)
≤ E

(
Di + 1

2

)
≤ ED2

1.

Hence, whenever ED2
1 <∞, the value of E

(Ni,n

2

)
will be trivially finite for all

graph sizes n; this includes the special case where the degree distribution is
bounded (f(d) = 0 for d > u, some u). A nontrivial aspect of Theorem 1(ii)
that the limit of E

(Ni,n

2

)
can also finitely exist even in cases where the degree

distribution is so heavy in its tail probabilities that ED2
1 =∞ holds and, in

this situation, ED2
1 can no longer provide a trivial finite bound on E

(Ni,n

2

)
.

This exact feature holds for degree distributions specified for many power
laws of interest, which are defined on [1,∞) and have probabilities

f(d) = L(d)d−β, integer d ≥ 1, (2)

where β ≥ 1 is the tail index and L(·) is a slowly varying function at ∞
(i.e., for any t > 0, L(td)/L(d) → 1 as d → ∞.) For concreteness, the
results of Theorem 1 are recast for the special case of power laws (2) under
the additional assumption that the slowly varying function is bounded away
from zero; this implies that, for r > 0, EDr

1 is finite if and only if r + 1 < β
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and encompasses scenarios such as constant L(d) = C or L(d) = C log(d).
(Without this constraint, EDr

1 for r = β−1 could be finite or not, depending
more closely on L(·).)

Corollary 1 Under the mechanism for generating random graphs, suppose
the degree distribution is a power law (2) where the slowly varying function
satisfies lim infd→∞ L(d) > 0. Then, the following table summaries moments
and limits as finite (F) or infinite (∞), where the values of finite limits are
as in Theorem 1 (denoted as “F-Th1”).

ED1 lim
n→∞

ENi,n ED4/3
1 lim

n→∞
E
(
Ni,n

2

)
ED2

1

β ≤ 2 ∞ ∞ ∞ ∞ ∞
β ∈ (2, 21

3 ] F F-Th1 ∞ ∞ ∞
β ∈ (21

3 , 3] F F-Th1 F F-Th1 ∞
β > 3 F F-Th1 F F-Th1 F

Corollary 1 implies that, for power laws (2), the limiting expectation
in Theorem 1(ii) [or (i)] is finite if and only if ED4/3

1 < ∞ [ED1 < ∞] if
and only if β > 21

3 [β > 2]. Perhaps surprisingly, the expected pairs from
a bucket will remain finite as the graph grows for heavy tailed power laws
with index β ∈ (21

3 , 3] for which ED2
1 =∞ holds.

3 Proof of Theorem 1

The proof of Theorem 1 (assuming ` > 0) is outlined in a series of steps,
which are divided into Sections 3.1-3.5 for clarity.

In a graph with n nodes, fix an arbitrary node i, WLOG say i = 1.
First, the expressions for the finite-sample expectations EN1,n and E

(N1,n

2

)
are given. To this end, let Bn(j) denote the generic event that a node j is a
neighbor of a node 1. If A and B represent two events/sets, let “A,B” denote
their set intersection. Using indicator functions (I(A) = 1 if event A holds
and otherwise I(A) = 0), write the count N1,n =

∑n
j=2 I(Bn(j), Dj ≥ D1

)
so that

EN1,n =
n∑
j=2

EI(Bn(j), Dj ≥ D1

)
= (n− 1)P(Bn(2), D2 ≥ D1), (3)
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using EI(Bn(j), Dj ≥ D1

)
= P(Bn(j), Dj ≥ D1) = P(Bn(2), D2 ≥ D1), and

similarly

EN2
1,n = E

n∑
j=1,j 6=i

n∑
k=1,k 6=i

I(Bn(j), Dj ≥ D1, Bn(k), Dk ≥ D1)

= (n− 1)(n− 2)P(Bn(2), D2 ≥ D1, Bn(3), D3 ≥ D1) + (n− 1)P(Bn(2), D2 ≥ D1)

using I(Bn(j), Dj ≥ D1, Bn(k), Dk ≥ D1) = I(Bn(j), Dj ≥ D1) if j = k.
Substitution of these expressions yields

E
(
N1,n

2

)
=

1
2

(EN2
1,n−EN1,n) =

(
n− 1

2

)
P(Bn(2), D2 ≥ D1, Bn(3), D3 ≥ D1).

(4)
Section 3.1 provides expansions which allow the expected values in (3)-(4)
to be expressed as

EN1,n = (n− 1)∆1,n +O

(
1
n

)
(5)

E
(
N1,n

2

)
=

(n− 1)(n− 2)
2

∆2,n +O

(
1
n

)
,

where ∆1,n,∆2,n are decompositions of the probabilities P(Bn(2), D2 ≥
D1),P(Bn(2), D2 ≥ D1, Bn(3), D3 ≥ D1) into sums of probabilities of more
elemental events. Section 3.1 also provides a further technical result, which
helps to show

lim
n→∞

(n− 1)∆1,n =
1

ED1

∞∑
d1=`

∞∑
d2=d1

d1d2 f(d1)f(d2) (6)

as established in Section 3.4, as well as

lim
n→∞

(n− 2)(n− 1)
2

∆2,n =
1

2(ED1)2

∞∑
d=`

∞∑
d2=d1

∞∑
d3=d1

d1d2(d1−1)d3 f(d1)f(d2)f(d3) <∞,

(7)
which is proven in Section 3.5. Theorem 1 then follows from (5)-(7).

3.1 Reduction Step and Technical Results

Lemma 1 below gives an expansion of the probabilities stated in (3)-(4) and
justifies the reduction step (5). Lemma 2 gives the limiting values of the
reductions as well as mild conditions for the limits to exist. To state the
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result, additional notation is required as well as an explicit function for the
probability of an edge forming between two nodes with the configuration
model as the graph generating mechanism. Write fSn−k

(s) = P(Sn−k = s)
to denote the probability function of the partial sum Sn−k =

∑n
i=k+1Di; in

a graph with n nodes, Sn−k is the sum of degrees for all nodes excluding
nodes 1, . . . , k.

Let A1 and A2 be two nodes with a1 and a2 stubs (two stubs connect to
form one edge) respectively in a graph with n nodes. Let s be the sum of
the remaining nodes in the graph such that a1 + a2 + s ≥ 2 and a1 + a2 + s
is even. Since the configuration allows for self-loops and multi-edges, let k
be the number of self-loops made by the stubs of node A1. Then there are

1(
a1+a2+s

2

)
!

(
a1 + a2 + s

2

)(
a1 + a2 + s− 2

2

)
· · ·
(

2
2

)
=

1
2(a1+a2+s)/2

P a1+a2+s
(a1+a2+s)/2

possible configurations in a graph with a1 + a2 + s edges. P yx = y!/(y − x)!
is the permutation function for integers y ≥ x ≥ 0 and P yx = 0 if x > y ≥ 0.
In order to calculate the probability that node A1 is not a neighbor of node
A2 given a1 and a2 stubs, respectively, in a graph with a1 + a2 + s stubs,
the number of configurations where all the stubs of node A1 do not connect
to any of the stubs of node A2 must be computed.

Given k self loops on node A1, there are 1
k!

(
a1

2

)(
a1−2

2

)
· · ·
(
a1−2(a1−1)

2

)
=

P
a1
2k

k!2k unique pairings of the stubs to form self-loops. For the a1−2k remaining
stubs, there are s!

[s−(a1−2k)]! = P sa1−2k possible pairings with the s stubs in the
graph not belonging to node A1 or A2. For the remaining s− (a1− 2k) + a2

stubs, there are 1
2(s−(a1−2k)+a2)/2P

s−(a1−2k)+a2

(s−(a1−2k)+a2)/2 possible pairing with stubs
not belonging to node A1. Hence, define a function

h(a1, a2, s
∗, k) = P a1

2k

2a1−2k

k!
P s

∗
a1−2k

1
P a1+a2+s∗

(a1+a2+s∗)/2

P
s∗−(a1−2k)+a2

[s∗−(a1−2k)+a2]/2, (8)

where s∗ = s if a1+a2+s is even and s∗ = s+1 if a1+a2+s is odd. A similar
version of (8) was derived by Wormold (1978) for d-regular random graphs.
This function represents the probability of nodes A1 and A2 not sharing any
edges conditioned on having node A1 have k self-loops. An unconditioned
argument requires summing over the k = 0, . . . , ba1/2c possible self-loops
that can be made by node A1. This results in

p1(a1, a2, s
∗) =

ba1/2c∑
k=0

h(a1, a2, s
∗, k). (9)
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Therefore, the probability that nodes A1 and A2 share at least one edge is
1− p(a1, a2, s

∗). This function will be useful in proving Lemma 2(i).
For the proof of Lemma 2(ii), the probability that node A1 and node A2

share at least one edge and node A1 and node A3 share at least one edge
must be computed. This probability is given by

p2(a1, a2, a3, s) = 1− p1(a1, a2, a3 + s)− p1(a1, a3, a2 + s) + p1(a1, a2 +a3, s).
(10)

This follows by the inclusion exclusion principle and the probability function
(8). In other words, this is equivalent to the probability node A1 shares at
least one edge with node A2 plus the probability node A1 shares at least
one edge with node A3, minus the probability probability node A1 share at
least one edge with nodes A2 or A3.

3.2 Lemma 1

Lemma 1 Under the mechanism for generating random graphs, as n→∞,

P(Bn(2), D2 ≥ D1) = ∆1,n +O

(
1
n2

)
P(Bn(2), D2 ≥ D1, Bn(3), D3 ≥ D1) = ∆2,n +O

(
1
n3

)
where, for p2(d1, d2, d3, s) ≡ 1 − p1(d1, d2, s + d3) − p1(d1, d3, s + d2) +
p1(d1, d2 + d3, s),

∆1,n ≡
∞∑

d1=max{`,1}

∞∑
d2=d1

f(d1)f(d2)
∞∑

s=(n−2)`

fSn−2(s)[1− p1(d1, d2, s)]

∆2,n ≡
∞∑

d1=max{2,`}

∞∑
d2=d1

∞∑
d3=d1

f(d1)f(d2)f(d3)
∞∑

s=(n−3)`

fSn−3(s)p2(d1, d2, d3, s).

Addressing the case ` > 0 so that max{`, 1} = `, the lemma essen-
tially states that complications in the graph construction due to any ad-
ditional randomization when D1 + D2 + Sn−2 (or D1 + D2 + D3 + Sn−3)
is odd can be ignored. In this case, Sn−2 (or Sn−3) is incremented by
1. This introduces a small order error compared to the main component
∆1,n in the probability P(Bn(2), D2 ≥ D1) (or the main term ∆2,n in
P(Bn(2), D2 ≥ D1, Bn(3), D3 ≥ D1)). Ignoring such additional random-
ization, ∆1,n is derived by decomposing P(Bn(2), D2 ≥ D1) as the sum of
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probabilities P(Bn(2), D2 ≥ D1, D1 = d1, D2 = d2, Sn−2 = s) over all val-
ues of d1, d2 ∈ [`,∞), s ∈ [(n − 2)`,∞). Using conditional probabilities, it
follows

P(Bn(2), D2 ≥ D1, D1 = d1, D2 = d2, Sn−2 = s)
= I(d2 ≥ d1) · P(Bn(2)|D1 = d1, D2 = d2, Sn−2 = s) · P(D1 = d1, D2 = d2, Sn−2 = s)

where P(D1 = d1, D2 = d2, Sn−2 = s) = P(D1 = d)P(D2 = d2)P(Sn−2 = s)
by independence of the node degrees. Above P(Bn(2)|D1 = d1, D2 =
d2, Sn−2 = s) is the conditional probability that nodes 1 and 2 are neigh-
bors in the case that D1 = d1, D2 = d2, Sn−2 = s. This is expressed as
P(Bn(2)|D1 = d1, D2 = d2, Sn−2 = s) = 1 − p1(d1, d2, s) as in (9). The
main component ∆2,n of P(Bn(2), D2 ≥ D1, Bn(3), D3 ≥ D1) is derived in
a similar manner.

Sections 3.4 and 3.5 establish the limits stated in (6) and (7), respec-
tively. These derivations are based on a technical result, given in Lemma 2
below, that allows the Lebesgue Dominated Convergence Theorem (DCT)
to be applied under the moment assumptions ED1 < ∞ or ED4/3

1 < ∞ in
Theorem 1. Briefly recall the main aspects of the DCT. If µ denotes a generic
measure on a measurable space (Ω,F) (cf. Ch. 2, Athreya and Lahiri, 2006)
and if hn generically denotes a sequence of (measurable) functions, the DCT
essentially says that the limit of integrals equals the integral of limits

lim
n→∞

∫
Ω
hndµ =

∫
Ω

lim
n→∞

hndµ,

if three components can be verified:

(i) there exists a measurable function h where limn→∞ hn = h pointwise
on Ω (except possibly on a set A ∈ F with µ(A) = 0);

(ii) there exists a measurable function g where |hn| ≤ g (except possibly
on a set An ∈ F with µ(An) = 0) for each n ≥ 1;

(iii) g is finitely integrable
∫

Ω gdµ <∞ under the measure µ.

Lemma 2 is helpful to establishing all three steps of the DCT in the frame-
work here. For illustration, define a measure µ by assigning mass f(d1)f(d2)
to integer points (d1, d2) ∈ Ω ≡ {(x, y) : max{1, `} ≤ x ≤ y} and define
functions as hn(d1, d2) =

∑∞
s=(n−2)` fSn−2(s)[1−p(d1, d2, s)] on integer pairs
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(d1, d2) ∈ Ω, then the integrals are weighted sums∫
Ω
hndµ ≡

∞∑
d1=max{1,`}

∞∑
d2=d1

f(d1)f2(d2)hn(d1, d2) = ∆1,n,

corresponding to the first quantity in Lemma 1. (However, in Sections 3.4-
3.5, a slightly different definition of functions is used to create integrals.)

3.3 Lemma 2

Lemma 2 Fix integers d1, d2, d3 ≥ `. For an integer s ≥ 0, let s∗ = s if
d1 +d2 +s is even and s∗ = s+1 otherwise (if d1 +d2 +d3 +s is even for (iii)
and (iv) ). Let C denote a generic constant, not depending on n, d1, d2, d3, s.
(i) There exists constant C > 0 such that, for any 1 ≤ d1 ≤ d2 and 1 ≤ s,

∞∑
s=(n−2)`

fSn−2(s)
∣∣∣s[1− p1(d1, d2, s)]

∣∣∣ ≤ Cd1d2.

(ii) For any fixed values of 1 ≤ d1 ≤ d2 and any δ > 0,

lim
n→∞

sup
s≥δn

∣∣∣s[1− p1(d1, d2, s)]− d1d2

∣∣∣ = 0.

(iii) There exists constant C > 0 such that, for any 1 ≤ d1 ≤ d2, d3 and
n ≥ 1,

n2
∞∑

s=(n−3)`

fSn−3(s)p2(d1, d2, d3, s) ≤ C(d1d2d3)4/3.

(iv) For any fixed values of 1 ≤ d1 ≤ d2, d3 and any δ > 0,

lim
n→∞

sup
s≥nδ

∣∣∣s2p2(d1, d2, d3, s)− d1d2(d1 − 1)d3

∣∣∣ = 0.

Note: It suffices to show the above results for s by the pointwise convergence
of
(
s+1
s

)
→ 1 and

(
s+1
s

)2 → 1.

3.4 Proof of (6) for Theorem 1(i)

For notational convenience, given a function h(d1, d2) of integers d1, d2, de-
fine Σd1,d2h(d1, d2) ≡

∑∞
d1=max{`,1}

∑∞
d2=d1

f(d1)f(d2)h(d1, d2). Next write

(n− 1)∆1,n =
∞∑

s=(n−2)`

fSn−2(s)
n− 1
s
· Σd1,d2d1d2 + Σd1,d2rn(d1, d2),
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where rn(d1, d2) ≡
∑∞

s=(n−2)` fSn−2(s)(n− 1)s−1[s(1− p1(d1, d2, s))− d1d2].
Fix ` ≤ d1 ≤ d2. Then |(n−1)/Sn−2| ≤ `−1 w.p.1 for all n and |rn(d1, d2)| ≤∑∞

s=(n−1)` fSn−2(s)`−1d1d2C = `−1Cd1d2 holds for all n by Lemma 2(i)
(where C does not depend on d1, d2). Using the result of Lemma 2(ii),
|rn(d1, d2)| ≤ `−1 sups≥n`/2 |s(1− p1(d1, d2, s))− d1d2| → 0. By the moment
assumption ED1 <∞, it holds that Σd1,d2`

−1Cd1d2 = C`−1Σd1,d2d1d2 <∞
since

Σd1,d2d1d2 =
1
2

(
(ED1)2 +

∞∑
d=`

[d f(d)]2
)
≤ (ED1)2 <∞.

Hence, by the DCT, limn→∞Σd1,d2rn(d1, d2) = Σd1,d2 limn→∞ rn(d1, d2) =
0.

By ED1 < ∞ and the strong law of large numbers (SLLN), Sn−2/(n −
1) → ED1 > 0 with probability 1 (w.p.1) as n → ∞, implying (n −
1)/Sn−2 → 1/ED1 w.p.1. The DCT then gives

lim
n→∞

∞∑
s=(n−2)`

fSn−2(s)
n− 1
s

= lim
n→∞

E
[
n− 1
Sn−2

]
= E

[
lim
n→∞

n− 1
Sn−2

]
= E

[
1

ED1

]
=

1
ED1

.

This establishes (6).

3.5 Proof of (7) for Theorem 1(ii)

Arguments for handling (n−2)(n−1)/2 ·∆2,n are similar to those of the last
section. Writing Σd1,d2,d3h(d1, d2, d3) ≡

∑∞
d1=max{2,`}

∑∞
d2=d1

∑∞
d3=d1

f(d1)f(d2)f(d3)h(d1, d2, d3)
for a given function h(d1, d2, d3), analogously expand

(n− 2)(n− 1)
2

∆2,n =
1
2

E
[

(n− 2)(n− 1)
S2
n−3

]
·Σd1,d2,d3d1d2(d1−1)d3+Σd1,d2,d3rn(d1, d2, d3)

where Σd1,d2,d3rn(d1, d2, d3) is a remainder defined by substraction. For each
fixed 1 ≤ d1 ≤ d2, d3, it holds that

|rn(d1, d2, d3)| ≤ sup
s≥n`/2

|s2p2(d1, d2, d3, s)− d1d2(d1 − 1)d3| ·
1
2

∞∑
s=(n−3)`

fSn−3(s)
[

(n− 2)(n− 1)
s2

]
≤ `−2 sup

s≥n`/2
|s2p2(d1, d2, d3, s)− d1d2(d1 − 1)d3|

so that by, Lemma 2(iv), limn→∞ rn(d1, d2, d3) = 0 with d1, d2, d3 fixed.
By Lemma 2(iii), there exists a constant C (not depending on n, d1, d2, d3)

11



where

|rn(d1, d2, d3)| ≤ n2
∞∑

s=(n−3)`

fSn−3(s)p2(d1, d2, d3, s) + E
[

(n− 1)(n− 2)
S2
n−3

]
d2

1d2d3

≤ C(d1d2d3)4/3

(since d1 ≤ d2, d3 and E[(n−1)(n−2)S−2
n−3] ≤ `−2). The moment assumption

ED4/3
1 <∞ implies

Σd1,d2,d3(d1d2d3)4/3 ≤ [ED4/3
1 ]3 <∞.

Therefore, the DCT gives limn→∞Σd1,d2,d3rn(d1, d2, d3) = Σd1,d2,d3 limn→∞ rn(d1, d2, d3) =
0. Using ED1 < ∞ and SLLN, (n − 1)(n − 2)S−2

n−3 → (ED1)−2 > 0 holds
w.p.1 as n → ∞; since (n − 1)(n − 2)S−2

n−3 ≤ `−2 for all n, the DCT again
yields E[(n− 1)(n− 2)S−2

n−3]→ E[(ED1)−2] = (ED1)−2. Hence, (7) follows.

Remark: Many authors have modeled the probability of an edge connecting
two nodes as proportional to the product of their degrees. The results in
Theorem 1(i) and Theorem 1(ii) are consistent with these authors models
as

P(Bn(2)|d1, d2) ≈ d1d2

nED1

and
P(Bn(2), Bn(3)|d1, d2, d3) ≈ d1d2

nED1

(d1 − 1)d2

nED1
.

Chung and Lu (2002) define the proportionality constant to be ρ−1 =∑n
i=1 di making the probability nodes D1 and D2 share an edge, p1,2, is

equal to d1d2ρ. This is equivalent in the limit as

p1,2 =
d1d2∑n
i=1 di

≡ d1d2

n
∑n

i=1 di

n

SLLN
≈ d1d2

nED1
.

Other authors such as Newman (2003) and Molloy and Reed (1995) have also
used the probability proportional to the degrees in their network models.

4 Proof of Lemma 1

4.1 Derivation of ∆1,n

Under the afore mentioned graph generating mechanism, ∆1,n is derived by
considering two cases, D1 + D2 + S is even and D1 + D2 + S is odd. In

12



the event that the sum is odd, the degree of a randomly selected node in
the graph is incremented by one, where all nodes are equally likely to be
incremented. Say D1, D2, Sn−2 are the underlying degree random variables
and D◦1, D

◦
2, S

◦
n−2 are the “observed” degree random variables. Define a

function giving transitional probabilities

g(d◦1, d
◦
2, s
◦|d1, d2, s) = P(D◦1 = d◦1, D

◦
2 = d◦2, S

◦
n−2 = s◦ |D1 = d1, D2 = d2, Sn−2 = s)

for integer d◦1, d
◦
2, s
◦, d1, d2, s ≥ `. This function breaks down into four cases

depending on the sum of the degrees.

g(d◦1, d
◦
2, s
◦|d1, d2, s) =


1 if d1 = d◦1, d2 = d◦2, s = s◦ d1 + d2 + s even
n−2
n if d1 = d◦1, d2 = d◦2, s = s◦ + 1 d1 + d2 + s odd
1
n if d1 = d◦1 + 1, d2 = d◦2, s = s◦ d1 + d2 + s odd
1
n if d1 = d◦1, d2 = d◦2 + 1, s = s◦ d1 + d2 + s odd

.

(11)
As before, let p(d◦1, d

◦
2, s
◦) ≡ the probability that nodes 1 and 2 are

neighbors given D◦1 = d◦1, D
◦
2 = d◦2, S

◦
n−2 = s◦. Let Bn(2) ≡ “Nodes 1 and

2 are neighbors” and X2,1 ≡ D◦1 ≤ D◦2. Define a conditional probability
function

k(d◦1, d
◦
2, s
◦) = P(Bn(2), X2,1|D◦1 = d◦1, D

◦
2 = d◦2, S

◦
n−2 = s◦)

=
{

0 if d◦1 > d◦2
p1(d◦1, d

◦
2, s
◦) if d◦2 ≥ d◦1

.

If D1 + D2 + Sn−2 is even then D1 = D◦1, D2 = D◦2, Sn−2 = S◦n−2; if
D1 +D2 +Sn−2 is odd then there are three possibilities: D1 = D◦1 +1, D2 =
D◦2, Sn−2 = S◦n−2; D1 = D◦1, D2 = D◦2 + 1, Sn−2 = S◦n−2; or D1 = D◦1, D2 =
D◦2, Sn−2 = S◦n−2 + 1. Decomposing P(Bn(2), X2,1) with the law of total
probability gives,

P(Bn(2), X2,1) =
∞∑
d1=`

∞∑
d2=d1

∞∑
s=(n−2)`

P(D1 = d1, D2 = d2, Sn−2 = s,A,B)

where P(D1 = d1, D2 = d2, Sn−2 = s,Bn(2), X2,1) may be written as

f(d1)f(d2)f(s)
∑

ν1,ν2,ν3∈{0,1}
ν1+ν2+ν3≤1

g(d1 + ν1, d2 + ν2, s+ ν3|d1, d2, s)k(d1 + ν1, d2 + ν2, s+ ν3)

= f(d1)f(d2)f(s)

[
p1(d1, d2, s)I(d1 + d2 + s even)+

I(d1 + d2 + s odd)
[(

n− 2
n

)
p1(d1, d2, s+ 1) +

(
1
n

)
p1(d1 + 1, d2, s) +

(
1
n

)
p1(d1, d2 + 1, s)

]]
.

13



Hence P(Bn(2), X2,1) = Ie + Io1 + Io2 + Io3 where

Ie =
∞∑
d1=`

∞∑
d2=d1

∞∑
s=(n−2)`

f(d1)f(d2)f(s)p1(d1, d2, s)I(d1 + d2 + s even)

Io1 ≡
∞∑
d1=`

∞∑
d2=d1

∞∑
s=(n−2)`

f(d1)f(d2)f(s)p1(d1, d2, s+ 1)I(d1 + d2 + s odd)

− 2
n

∞∑
d1=`

∞∑
d2=d1

∞∑
s=(n−2)`

f(d1)f(d2)f(s)p1(d1, d2, s+ 1)I(d1 + d2 + s odd)

≡ I
(1)
o1 −

2
n
I

(2)
o1

Io2 ≡ 1
n

∞∑
d1=`

∞∑
d2=d1+1

∞∑
s=(n−2)`

f(d1)f(d2)f(s)p1(d1 + 1, d2, s)I(d1 + d2 + s odd)

Io3 ≡ 1
n

∞∑
d1=`

∞∑
d2=

max{d1−1,`}

∞∑
s=(n−2)`

f(d1)f(d2)f(s)p1(d1, d2 + 1, s)I(d1 + d2 + s odd)

≡ 1
n

∞∑
d1=`+1

∞∑
d2=d1

∞∑
s=(n−2)`

f(d1)f(d2)f(s)p1(d1, d2 + 1, s)I(d1 + d2 + s odd)

+
1
n

∞∑
d1=`+1

∞∑
s=(n−2)`

f(d1)f(d1 − 1)f(s)p1(d1, d1, s)I(2d1 + s odd)

+
1
n

∞∑
s=(n−2)`

f(`)f(`)f(s)p1(`, `, s)I(2`+ s odd).

Therefore,

∆1,n = Ie + I
(1)
o1 =

∞∑
d1=`

∞∑
d2=d1

∞∑
s=(n−2)`

f(d1)f(d2)f(s)p1(d1, d2, s)

14



where the remainder R = P(Bn(2), X2,1)−∆1,n satisfies

|R| ≤ |I(2)
o1 |+ |Io2|+ |Io3|

≤ 2
n2

∞∑
d1=`

∞∑
d2=d1

f(d1)f(d2)

n ∞∑
s=(n−2)`

f(s)
[
p1(d1, d2, s) + p1(d1 + 1, d2, s) + p1(d1, d2 + 1, s)

]
+

1
n2

∞∑
d1=`

f(d1)f(max{`, d1 − 1})

n ∞∑
s=(n−2)`

f(s)p(d1, d1, s)


≤ C

n2

∞∑
d1=`

∞∑
d2=d1

f(d1)f(d2)(d1 + 1)(d2 + 1) +
C

n2

∞∑
d1=`

f(d1)f(max{`, d1 − 1})d2
1.

Using Lemma 2(i) and n
s ≤ 3/` for s ≥ (n− 2)`, n ≥ 3. Now

∞∑
d1=`

∞∑
d2=d1

f(d1)f(d2)(d1 + 1)(d2 + 1) ≤
∞∑
d1=`

∞∑
d2=d1

f(d1)f(d2)d1d2 ≤ 4(ED1)2 <∞

and
∞∑
d1=`

f(d1)f(max{`, d1 − 1})d2
1 ≤ (ED1)(ED1 + 1) <∞

Hence,

P(Bn(2), D2 ≥ D1) = ∆1,n +O

(
1
n2

)
.

4.2 Derivation of ∆2,n

Similarly to ∆1,n, ∆2,n requires considering the two two cases, D1 + D2 +
D3 + S even and D1 + D2 + D3 + S odd. In the event that the sum is
odd, a node in the graph will again be randomly selected to have its degree
incremented by one. Considering all nodes equally likely to be incremented,
let D1+D2+D3+S be the degree random variables and let D◦1+D◦2+D◦3+S◦

be the “observed” degree random variables. Define a function

g(d◦1,d
◦
2, d
◦
3, s
◦|d1, d2, d3, s) =

P(D◦1 = d◦1, D
◦
2 = d◦2, D

◦
3 = d◦3, S

◦
n−3 = s◦ |D1 = d1, D2 = d2, D3 = d3, Sn−3 = s)

(12)
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for integers d1, d2, d3, s, d
◦
1, d
◦
2, d
◦
3, s
◦ ≥ `. This function breaks down into

five cases depending on the sum of degrees.

g(d◦1,d
◦
2, d
◦
3, s
◦|d1, d2, d3, s) =

1 if d1 = d◦1, d2 = d◦2, d3 = d◦3, s = s◦ d1 + d2 + d3 + s even
n−3
n if d1 = d◦1, d2 = d◦2, d3 = d◦3, s = s◦ + 1 d1 + d2 + d3 + s odd
1
n if d1 = d◦1 + 1, d2 = d◦2, d3 = d◦3, s = s◦ d1 + d2 + d3 + s odd
1
n if d1 = d◦1, d2 = d◦2 + 1, d3 = d◦3, s = s◦ d1 + d2 + d3 + s odd
1
n if d1 = d◦1, d2 = d◦2, d3 = d◦3 + 1, s = s◦ d1 + d2 + d3 + s odd

As before let h(d1, d2, d3, s) ≡ the probability the nodes 1 and 2 are
neighbors and nodes 1 and 3 are neighbors given D◦1 = d◦1, D

◦
2 = d◦2, D

◦
3 =

d◦3, S
◦ = s◦. Let Bn(2) ≡ “Nodes 1 and 2 are neighbors” and D◦1 ≤ D◦2. Let

Bn(3) ≡ “Nodes 1 and 3 are neighbors” and D◦1 ≤ D◦3. Define a function

k(d◦1, d
◦
2, d
◦
3, s
◦) = P(Bn(2), Bn(3)

∣∣D◦1 = d◦1, D
◦
2 = d◦2, D

◦
3 = d◦3, S

◦
n−3 = s◦)

=


0 if d◦1 > d◦2
0 if d◦1 > d◦3

p2(d◦1, d
◦
2, d
◦
3, s
◦) if d◦2, d

◦
3 ≥ d◦1

Decomposing P(Bn(2), Bn(3)) with the law of total probability it follows,

P(Bn(2), Bn(3), X2,1, X3,1) =
∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

∞∑
s=(n−3)`

P(Bn(2), Bn(3), D1 = d1, D2 = d2, D3 = d3, Sn−3 = s)
≡ Ie + Io

where P(Bn(2), Bn(3), D1 = d1, D2 = d2, D3 = d3, Sn−3 = s) may be written
as

f(d1)f(d2)f(d3)f(s)
∑

ν1,ν2,ν3,ν4∈{0,1}
ν1+ν2+ν3+ν4≤1

g(d1 + ν1, d2 + ν2, d3 + ν3, s+ ν4|d1, d2, d3, s)

× k(d1 + ν1, d2 + ν2, d3 + ν3, s+ ν4)

= f(d1)f(d2)f(d3)f(s)

[
p2(d1, d2, d3, s)I(d1 + d2 + s even)+

I(d1 + d2 + s odd)
[(n− 3

n

)
p2(d1, d2, d3, s+ 1) +

(
1
n

)
p(d1 + 1, d2, d3, s)

+
(

1
n

)
p2(d1, d2 + 1, d3, s) +

(
1
n

)
p2(d1, d2, d3 + 2, s)

]]
.
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Hence, P(Bn(2), Bn(3), X2,1, X3,1) = Ie + Io1 + Io2 + Io3 + Io4 where

Ie =
∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)g(d1, d2, d3, s|d1, d2, d3, s)

× k(d1, d2, d3, s)I(d1 + d2 + d3 + s even)

=
∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)h(d1, d2, d3, s)I(d1 + d2 + d3 + s even)

Io1 ≡
∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)
n− 3
n

h(d1, d2, d3, s)I(d1 + d2 + d3 + s odd)

≡
∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)h(d1, d2, d3, s)I(d1 + d2 + d3 + s odd)

− 3
n

∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)h(d1, d2, d3, s)I(d1 + d2 + d3 + s odd)

≡ I(1)
o,1 −

3
n
I

(2)
o1

Io2 ≡
1
n

∞∑
d1=`

∞∑
d2=d1+1

∞∑
d3=d1+1

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)h(d1 + 1, d2, d3, s)I(d1 + d2 + d3 + s odd)

Io3 ≡
1
n

∞∑
d1=`

∞∑
d2=

max{`,d1−1}

∞∑
d3=d1

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)p2(d1, d2 + 1, d3, s)I(d1 + d2 + d3 + s odd)

≡ 1
n

∞∑
d1=`+1

∞∑
d2=d1

∞∑
d3=d1

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)p2(d1, d1, d3, s)I(d1 + d2 + d3 + s odd)

+
1
n

∞∑
d1=`+1

∞∑
d3=d1

∞∑
s=(n−3)`

f(d1)f(d1 − 1)f(d3)f(s)p2(d1, d1, d3, s)I(2d1 + d3 + s odd)

+
1
n

∞∑
d3=`

∞∑
s=(n−3)`

f(`)f(`)f(d3)f(s)p2(`, `, d3, s)I(2`+ d3 + s odd)
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Io4 ≡
1
n

∞∑
d1=`

∞∑
d2=d1

∞∑
d3=

max{`,d1−1}

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)p2(d1, d2 + 1, d3, s)I(d1 + d2 + d3 + s odd)

≡ 1
n

∞∑
d1=`+1

∞∑
d2=d1

∞∑
d3=d1

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)p2(d1, d3, d1, s)I(d1 + d2 + d3 + s odd)

+
1
n

∞∑
d1=`+1

∞∑
d2=d1

∞∑
s=(n−3)`

f(d1)f(d2)f(d1 − 1)f(s)p2(d1, d2, d1, s)I(2d1 + d2 + s odd)

+
1
n

∞∑
d2=`

∞∑
s=(n−3)`

f(`)f(d2)f(`)f(s)p2(`, d2, `, s)I(2`+ d2 + s odd).

Consequently,

∆2,n = Ie+I
(1)
o1 =

∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

∞∑
s=(n−3)`

f(d1)f(d2)f(d3)f(s)p2(d1, d2, d3, s)

where the remainder R = P(Bn(2), Bn(3), X2,1, X3,1)−∆2,n satisfies

R ≤ |I(2)
o1 |+ |Io2|+ |Io3|+ |Io4|

≤ 3
n3

∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

f(d1)f(d2)f(d3)

(
n2

∞∑
s=(n−3)`

f(s)
[
p2(d1 + 1, d2, d3, s) + p2(d1, d2 + 1, d3, s)

+ p2(d1, d2, d3 + 1, s) + p2(d1, d2, d3, s+ 1)
])

+
1
n3

∞∑
d1=`

∞∑
d2=d1

f(d1)f(max{d1 − 1, `})f(d2)

n2
∞∑

s=(n−3)`

f(s)p2(d1, d2, d1, s)


+

1
n3

∞∑
d1=`

∞∑
d3=d1

f(d1)f(max{d1 − 1, `})f(d3)

n2
∞∑

s=(n−3)`

f(s)p2(d1, d1, d3, s)


≤ C

n3

∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

f(d1)f(d2)f(d3)(d1 + 1)(d2 + 1)(d1)(d3 + 1)

+
C

n3

∞∑
d1=`

∞∑
d2=d1

f(d1)f(max{d1 − 1, `})f(d2)d2
1(d1 − 1)d3

+
C

n3

∞∑
d1=`

∞∑
d3=d1

f(d1)f(max{d1 − 1, `})f(d3)d1d2(d1 − 1)d1.
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Using Lemma 2(iii), n2

s2
≤ 1 and s ≥ (n− 3)`, n ≥ 4,

∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

f(d1)f(d2)f(d3)(d1 + 1)(d2 + 1)(d1)(d3 + 1)

≤
∞∑
d1=`

∞∑
d2=d1

∞∑
d3=d1

f(d1)f(d2)f(d3)4d1d2(d1 − 1)d3

≤ 4E(D1D2D3)4/3 <∞

and
∞∑
d1=`

∞∑
d2=d1

f(d1)f(max{d1 − 1, `})f(d2)d2
1(d1 − 1)d3 ≤ E(D1D2D3)4/3 <∞

and
∞∑
d1=`

∞∑
d3=d1

f(d1)f(max{d1−1, `})f(d3)d1d2(d1−1)d1 ≤ E(D1D2D3)4/3 <∞.

Hence

P(Bn(2), Bn(3), D3 ≥ D1, D2 ≥ D1) = ∆2,n +O
(
n−3

)
.

5 Proof of Lemma 2

Without loss of generality consider nodes D1, D2 and D3 each having d1, d2

and d3 stubs. To evaluate the limit, each factorial involving s in (8) is
approximated using Stirling’s Approximation to log(s!)

log(s!) =
log(
√

2π)
2

+ s log s− s+
1

12s
+O

( 1
s3

)
. (13)

This changes the expression of each of the disjoint h(d1, d2, s, k) from (8) to

h(d1, d2, s, k) =
d1! ek

(d1 − 2k)!k!2k
1
sk

(
1− (d1 − 2k)

s

)(s−(d1−2k)+1/2(
1 +

d1 + d2

s

)(s+d1+d2)/2

×
(

1 +
d2 − (d1 − 2k)

s

)(s+d2−(d1−2k))/2
×R(d1, d2, s, k)

(14)

where

R(d1, d2, s, k) = exp
(

4k − 3d1

s2
+ d1d2O

(
s−3
))

.
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5.1 Proof for Lemma 2(i)

Consider
∣∣s[1 − p1(d1, d2, s)]

∣∣. Since [1 − p1(d1, d2, s)] ≤ 1 for all d1, d2, s,
it follows,

∣∣s[1 − p1(d1, d2, s)]
∣∣ < 4d1d2 ≤ Cd1d2 for s ≤ 4d1d2. Therefore,

it is left to show for s > 4d1d2 there exists a constant C > 0 such that
s[1 − p1(d1, d2, s)] < Cd1d2. To show this requires the decomposition of
s[1 − p1(d1, d2, s)] into its component parts. Stirling’s approximation (13)
is then used to establish the existence of the bound. Taylor’s Theorem is
used to evaluate two cases, no self-links and at least one self link. In the
notation this corresponds to k = 0 and k > 0. Substitution of Stirling’s
approximation (13) for each factorial involving s yields,

g(k, d1, d2, s) =
d1! ek

(d1 − 2k)!k!2k
1
sk

(
1− (d1 − 2k)

s

)(s−(d1−2k)+1/2(
1 +

d1 + d2

s

)(s+d1+d2)/2

×
(

1 +
d2 − (d1 − 2k)

s

)(s+d2−(d1−2k))/2
×R(k, d1, d2, s)

(15)

where

R(k, d1, d2, s) = exp
(

4k − 3d1

s2
+ d1d2O

(
s−3
))

.

Using the taylor expansions for exp(x) and log(1 + x) it follows,

g(k, d1, d2, s) =
d1!ek

(d1 − 2k)!k!2k
1
sk

exp
{
q(d1, d2, s, k)

}
×R(k, d1, d2, s)

where

q(d1, d2, s, k) = −k +
∞∑
r=1

(−1)r
(2k − d1)(r+1)

(r(r + 1))sr
+
∞∑
r=1

(−1)r
(2k − d1)r

2(r)sr

+
∞∑
r=1

(−1)r+1

(
(d2 + 2k − d1)(r+1)

(2r(r + 1))sr
− (d2 + d1)(r+1)

(2r(r + 1))sr

)
. (16)

Fix 1 ≤ k ≤ bd1/2c. A bound for each of the summations from (16) will be
shown to exist using d2

1 ≤ d1d2 ≤ d2
2 and (d1 + d2)m ≤ (2d2)m for d1 ≤ d2

along with 1
4d1d2

> 1
4d1d2+1 . When d1 ≥ 1 it holds,∣∣∣∣∣

∞∑
r=1

(−1)r
(2k − d1)(r+1)

(r(r + 1))sr

∣∣∣∣∣ ≤
∞∑
r=1

(d1)(r+1)

(r2)4r(d1)2r
≤ 1

4
.
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Similarly,∣∣∣∣∣
∞∑
r=1

(−1)r
(2k − d1)r

2(r)sr

∣∣∣∣∣ ≤
∞∑
r=1

(d1)r

2(r)4r(d1)2r
≤ 1

2

∞∑
r=1

1
4r

=
2
3
.

The result |(a− b)m+1 − (a+ b)m+1| ≤ (m+ 1)(2b)m(2a), for b ≥ a, m ≥ 1
along with the triangle inequality establish the bound

∞∑
r=1

∣∣∣∣∣(−1)r+1

(
(d2 + 2k − d1)(r+1)

(2r(r + 1))sr
− (d2 + d1)(r+1)

(2r(r + 1))sr

)∣∣∣∣∣
≤
∞∑
r=1

(r + 1)(2d2)r 2(d1 − 2k)
2r(r + 1)(4d1d2)r

≤
∞∑
r=1

1
2r

= 2.

Since max1≤k≤bd1/2cR(k, d1, d2, s) ≤ C for a constant C > 0 not depending
on d1, d2 where s ≥ 4d1d2, it holds that

b d1
2
c∑

k=1

g(k, d1, d2, s) ≤ C
b d1

2
c∑

k=1

d1!
(d1 − 2k)!

1
2ksk

≤ Cd
2
1

s

∞∑
i=1

1
2k
≤ 2C

d1d2

s
.

Now consider k = 0 and g(k = 0, d1, d2, s) for s ≥ 4d1d2. In this case,
R(0, d1, d2, s) = exp(−d1/(4s2)+d1d2O(s−3)) and (16) bound as |h(d1, d2, s, k =
0)| ≤ 4d1d2/s, using similar arguments as before. Hence, |s(1− g(k = 0, d1, d2, s))| ≤
Cd1d2 for s ≥ 4d1d2 using that ex = 1 + xea for some 0 ≤ a ≤ x.

5.2 Proof of Lemma 2(ii)

Fix integers d1, d2 ≥ `. Using Stirling’s approximation from (13) to evaluate
the behavior of s in the permutation functions in h(d1, d2, s, k) from (9), it
is shown that as a function of k ≥ 0,

h(d1, d2, s, 0) = exp

[
− d1(d1 − 1)

2s
− d1d2

s
+O

(
1
s2

)]
k = 0

h(d1, d2, s, 1) =
d1(d1 − 1)

2s
exp

[
O

(
1
s

)]
k = 1

h(d1, d2, s, k) = O

(
1
sk

)
k ≥ 0.
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Hence,

(
1− p1(d1, d2, s)

)
= 1−

[
h(d1, d2, s, 0) + h(d1, d2, s, 1) +O

( 1
s2

)]

=
d1d2

s
+O

( 1
s2

)
.

Therefore, as s → ∞, s
(
1− p1(d1, d2, s)

)
→ d1d2. Hence, for δ > 0 and for

fixed d2 ≥ d1

lim
n→∞

sup
s≥δn

∣∣∣s[1− p1(d1, d2, s)]− d1d2

∣∣∣ = 0.

5.3 Proof for Lemma 2(iii)

Consider
∣∣n2[p2(d1, d2, d3, s)]

∣∣ where p2(d1, d2, d3, s) = 1−p1(d1, d2, s+d3)−
p1(d1, d3, s+ d2) + p1(d1, d2 + d3, s). There are three cases to consider: (1)
d1d2 > n/6, (2) d1d2 ≤ n/6 and d1d3 > s/36 and (3) d1d2 ≤ n/6 and
d1d3 < s/36. Without loss of generality consider d1 ≤ d2 ≤ d3. If not then
d1 ≤ d3 ≤ d2 will be the case and the three cases to consider will change only
in that d2 and d3 will switch places. Substituting Stirling’s approximation
for each factorial involving s we see

In the case d1d2 > n/6 it holds,

n2
∞∑

s=(n−3)`

fSn−3p2(d1, d2, d3, s) ≤ 36(d1d2)2 ≤ 36(d1d2d3)4/3 <∞.

In the second case,

s|p2(d1, d2, d3, s)| ≤ s
∣∣1− p1(d1, d2, s+ d3)

∣∣+ s
∣∣p1(d1, d2 + d3, s)− p1(d1, d3, s+ d2)

∣∣
≤ Cd1d2 + s

∣∣∣∣d1(d2 + d3)
s

− d1d3

s
+O

(
1
s2

)∣∣∣∣ ≤ 2Cd1d2.

Since d1d3 > s/36 > n/36

n2
∞∑

s=(n−3)`

fSn−3

s
s p2(d1, d2, d3, s) ≤ Cd1d2(36d1d3) ≤ 36C(d1d2d3)4/3 <∞.

Finally there is the case d1d2 ≤ n/6 and d1d3 < s/36. One way to approach
this situation is by proceeding as in Lemma 2i and considering the cases
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k = 0, 1 and k ≥ 2 then using ex ≤ 1 + x + x2

2 e
a for some a ∈ [0, x]. For

k ≥ 2,

3
∞∑
k=2

d1!
(d1 − 2k)!sk−22k

≤Md4
1

∞∑
k=2

12k ≤ 3Md4
1

2
≤M ′(d1d2d3)4/3 <∞.

Where M ′ ∈ (0,∞) is the bound obtained as in Lemma 2i since s > 36d1d3.
For k = 0 it follows

s2|p2(d1, d2, d3, s)| = s2
∣∣1− p1(d1, d2, s+ d3)− p1(d1, d3, s+ d2) + p1(d1, d2 + d3, s)

∣∣
≤ s2

∣∣∣∣∣ d1d2

s+ d3
+ eEq.(16) 1

2

(
d1d2

s+ d3

)2

+
d1d3

s+ d2
+ eEq.(16) 1

2

(
d1d3

s+ d2

)2

− d1(d2 + d3)
s

+ eEq.(16) 1
2

(
d1(d2 + d3)

s

)2
∣∣∣∣∣

≤ s2

∣∣∣∣ d1d2

s+ d3
+

d1d3

s+ d2
− d1(d2 + d3)

s

∣∣∣∣
+ s2

∣∣∣∣12eEq.(16)

∣∣∣∣
∣∣∣∣∣
(
d1d2

s+ d3

)2

+
(
d1d3

s+ d2

)2

−
(
d1(d2 + d3)

s

)2
∣∣∣∣∣

≤ C(d1d2d3)4/3 <∞.

For k = 1 it holds that g(k = 2, d1, d2, d3, s) ≤ g(k = 1, d1, d2, d3, s) ≤
g(k = 0, d1, d2, d3, s) ≤ C(d1d2d3)4/3 <∞. Hence, the DCT can be applied
allowing the limit and the summation to be interchanged provided ED4/3

1 <
∞.

5.4 Proof of Lemma 2(iv)

Fix integers d1, d2, d3 ≥ 0. Again using Stirling’s approximation (13) to
evaluate the behavior of s in each of the permutation functions in (10), it is
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shown that for k ≥ 0,

k ≥ 0 h(d1, d2, s, k) = O

(
1
sk

)
k = 2 h(d1, d2, s, 2) =

d1(d1 − 1)(d1 − 2)(d1 − 3)
8s2

+O
( 1
s3

)
k = 1 h(d1, d2, s, 1) =

d1(d1 − 1)
2s

exp

[
(d2 + 1)(1− d1)

s
− 1

2
(d1 − 2)(d1 − 3)

s
+O

( 1
s2

)]

k = 0 h(d1, d2, s, 0) = exp

[
− d1(d1 − 1)

2s
− d1d2

s
+

1
s2

(
d2

2d1

2

+
d2

2d
2
1

2
+
d2

1(d1 − 1)d2

2
+
d2

1(d1 − 1)2

8
+
d1(d1 − 1)

4

)
+O

( 1
s3

)]
.

When k = 0 there is a contribution of exp
(−d1

4s2

)
to this from the 1

12s term
of (13).

(
1− p1(d1, d2, s)

)
= 1−

[
h(d1, d2, s, 0) + h(d1, d2, s, 1) + h(d1, d2, s, 2) +O

( 1
s3

)]

=
d1d2

s
− 1
s2

[
d2

2d1

2
+
d2

2d
2
1

2
+
d2

1(d1 − 1)d2

2
+
d1(d1 − 1)

4
+
d2

1(d1 − 1)2

8

− d1(d1 − 1)2(d2 + 1)
2

− d1(d1 − 1)(d1 − 2)(d1 − 3)
8

]
+O

( 1
s3

)
.

Using the decomposition:

p2(d1, d2, d3, s) =
(
1−p1(d1, d2, s2+d3)

)
+(1−p1(d1, d3, s2+d2)

)
−
(
1−p1(d1, d2+d3, s2)

)
as s → ∞, s2

(
p2(d1, d2, d3, s)

)
→ d1d2(d1 − 1)d3. Hence, for δ > 0 and for

fixed d2 ≥ d1 and d3 ≥ d1

lim
n→∞

sup
s≥δn

∣∣∣s2p2(d1, d2, d3, s)− d1d2(d1 − 1)d3

∣∣∣ = 0.

24



6 Simulations

Simulations from three different degree distributions, each with different
moment properties, were performed to examine the asymptotic behavior of
the expectations for both the size of a bucket and the expected number of
pairs in a bucket. Graphs of size n = 50, 100, 500, 1000, 5000 were generated
using the configuration model. For each graph size and degree distribution,
4000 random graphs were generated under the configuration model. In the
event that the sum of the degrees was odd in a graph generation, one of the
nodes was randomly selected and incremented by one.

The expected size ENi,n of a bucket and the expected number of pairs
E
(Ni,n

2

)
in a bucket were approximated as follows. For a given graph size n,

degree distribution and Monte Carlo run j = 1, . . . , 4000, let N (j)
i,n and D

(j)
i,n

denote the bucket size and observed degree for node i = 1, . . . , n. Monte
Carlo approximations for ENi,n, E

(Ni,n

2

)
, and ED(j)

i,n were computed as

1
4000

4000∑
j=1

(
1
n

n∑
i=1

N
(j)
i,n

)
,

1
4000

4000∑
j=1

(
1
n

n∑
i=1

(
N

(j)
i,n

2

))
,

1
4000

4000∑
j=1

(
1
n

n∑
i=1

D
(j)
i,n

)
,

which correspond to Monte Carlo averages of within-graph sample averages.
These approximates are reported in Tables 1-3 to follow, separated by de-
gree distribution. These tables also include a value “∞” which denotes the
theoretical limits of ENi,n and E

(Ni,n

2

)
from Theorem 1 as well as the limit

limn→∞ EDi,n = ED1 (where EDi,n may differ from ED1 due to imcrement-
ing a random node by 1 in the configuration model). For each graph size

n and degree distribution, 1
4000

∑4000
j=1

(∑n
i=1

(N(j)
i,n

2

))
was computed as the

Monte Carlo approximation of nE
(Ni,n

2

)
=
∑n

i=1 E
(Ni,n

2

)
, the expected num-

ber of bucket pairs summed over all nodes in the graph. These values are
displayed in Figures 1-3 to follow. R code for both the simulations and the
theoretical limits can be seen in the appendix sections “Empirical Results”
and “Theoretical Results”, respectively.

Two power law degree distributions were manually programmed for the
simulations. The first was a power law with exponent β = 2.4 and the sec-
ond was a power law with exponent β = 3.2. To simplify the simulations,
both power law distributions were truncated at 50,000. Using a continu-
ous approximation for both power law distributions used shows that the
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probability of observing a degree greater than 50,000 is approximately

P(Di > 50, 000|β) =
∞∑

d=50,001

d−β <

∫ ∞
50,000

(β − 1)x−β dx = 50, 0001−β.

For β = 2.4, P(Di > 50, 000) < 2.63×10−7. For β = 3.2, P(Di > 50, 000) <
4.59 × 10−11. Consequently, this is a conservative truncation point that
will not affect graphs of the size generated. The third distribution was a
Poisson distribution with parameter λ = 4.0 which was truncated at 500
due to numerical restrictions. That is, the probability of observing a degree
greater than 500 was less than 1 × 10−350. See the “Distributions” section
of the appendix for R code.

6.1 Power Law β = 2.4

A power law degree distribution with exponent β = 2.4 was chosen as it has
a finite 4/3 moment but does not have a finite second moment. As can be
seen in Table 1, the convergence of the expected bucket size and the expected
number of pairs in a bucket to the theoretical limits from Theorem 1 is slow.

Figure 1 plots the expected total number of bucket pairs over all graph nodes

n ENi,n E
(Ni,n

2

)
EDi,n

50 1.029 0.103 2.219
100 1.068 0.135 2.291
500 1.138 0.217 2.223
1000 1.161 0.256 2.215
5000 1.202 0.345 2.233
∞ 1.257 0.687 2.221

Table 1: Power law degree distribution with α = 2.4.

against the size of a graph. The figure also displays n·limn→∞ E
(Ni,n

2

)
(graph

size times theoretical limit) plotted as a straight line function of graph size
n. Because of the slow convergence, the empirical expectation also depends
on the size of the graph. The solid line shows that the expected number of
pairs in a bucket grows linearly with the number of nodes in a graph.

6.2 Power Law β = 3.2

A power law degree distribution with exponent β = 3.2 was chosen because
it has a finite second moment. As can be seen in Table 1, the convergence
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Figure 1: Scales at most linearly when the second moment is undefined.

of the expected bucket size and the expected number of pairs in a bucket
to the theoretical limits from Theorem 1 is quite reasonable. A graph with
500 nodes already has two significantdigits for the expected size of a bucket

n ENi,n E
(Ni,n

2

)
EDi,n

50 0.931 0.0123 1.283
100 0.935 0.0130 1.281
500 0.941 0.0142 1.280
1000 0.942 0.0142 1.277
5000 0.943 0.0145 1.278
∞ 0.943 0.0146 1.277

Table 2: Power law degree distribution with α = 3.2.

and three significant digits for the expected number of pairs in a bucket.
The linear increase in the expected number of pairs in a bucket with the
size of the graph can clearly be seen in Figure 2. This suggests that the
convergence of ENi,n and E

(Ni,n

2

)
to their theoretical limits will be fast for

all power law degree distributions with a finite second moment.

6.3 Poisson with λ = 4.0

A Poisson degree distribution with parameter λ = 4.0 was chosen as an
example of a degree distribution where all the moments are finite. As can be
seen in Table 3, the convergence of the expected bucket size and the expected
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Figure 2: Scales linearly when the second moment is finite.

number of pairs in a bucket to the theoretical limits from Theorem 1 is quite
fast. The difference from the β = 3.2 case is perhaps that E

∑n
i=1

(Ni,n

2

)
n ENi,n E

(Ni,n

2

)
EDi,n

50 2.20 1.90 4.09
100 2.26 2.01 4.08
500 2.31 2.10 4.07
1000 2.32 2.12 4.07
5000 2.328 2.127 4.074
∞ 2.329 2.130 4.074

Table 3: Poisson degree distribution with λ = 4.0.

converges to n · limn→∞ E
(Ni,n

2

)
a little better at all graph sizes (including

n = 5000). The linear increase in the expected number of pairs in a bucket
as the size of the graph increases can clearly be seen in Figure 3.

7 Conclusion

As the networks being studied continue to grow, the time and space re-
quirements of the algorithms used in complex network analysis becomes a
major concern. In order for the “bucket” algorithm to be an effective node
counting algorithm, these requirements must grow at most linearly for rele-
vant degree distributions. The empirical evidence suggests that many of the
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Figure 3: Scales linearly when every moment is finite.

real-world networks be modeled with a power law degree distribution with
exponent 2 < β < 3. By showing the expected number of pairs of nodes in
a bucket is finite provided the degree distribution has a finite 4/3 moment,
a mild condition was given under which the requirements for the “bucket”
algorithm grow at most linearly. This is an original and non-trivial result as
the lack of a finite second moment for the desired power law distributions is
almost always mitigated by truncation. Further our results hold for any ar-
bitrary degree distribution, showing that the “bucket” algorithm will be an
effective node counting algorithm for scale-free networks with an exponent
β > 21

3 .
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Appendix

Here is the R code used for the simulations.

Distributions

##Power Law Beta = 2.4
m<-50000
alpha<-2.4
v<-seq(1,m,1)^(-alpha)
v<-v/sum(v)

##Power Law Beta = 3.2
m<-50000
alpha<-3.2
v<-seq(1,m,1)^(-alpha)
v<-v/sum(v)

##Poisson (lambda = 4.0)
m <- 500 ##computational limits, probabilities were 0 by 500
lambda <- 4.0
v<-dpois(m,lambda)
v<-v/sum(v)

Theoretical Limits

ED<-sum(v*seq(1,m,1))
EN<-0
EN2<-0
for(i in 1:m){
tmp<-sum(seq(i,m,1)*v[i:m])
EN<-EN + v[i]*i*tmp
EN2<-EN2 + v[i]*i*(i-1)*(tmp^2)
}
EN<-EN/ED
EN2<-EN2/(2*ED^2)
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Empirical Results

# specify M= # of Monte Carlo runs
M<-1000
res2<-matrix(0,ncol=3,nrow=M)

### specify "n" here
n<-50

for(jj in 1:M){

## sample degrees
t<-sample.int(m,n,replace=TRUE,prob=v)

## adjust if sum of degrees is odd
tmp<-sum(t)/2
tmp<- tmp-floor(tmp)

if(tmp>0){
r<- ceiling(runif(1)*n)
t[r]<-t[r]+1
}

### random wiring: t1 & t2 are final vectors, components of t1 are
### matched to components of t2 to form edges between nodes

### the vector "tt" below contains the value "i" exactly D_i times
### for i=1,...,n where D_i is the degree drawn for node i

t1<-rep(seq(1,n,1),t)
tt<-t1
n1<-length(t1)
t3<-sample(seq(1,n1,1))

t1<-tt[t3[1:(n1/2)]]
t2<-tt[t3[(1+n1/2):n1]]

td1<-t1
td2<-t2
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n1<-length(t1)
J<-matrix(0,ncol=n,nrow=n)
J1<-J

for(i in 1:n1){
a1<-t1[i]
a2<-t2[i]

if(a1!=a2){
J1[a1,a2]<-1
J1[a2,a1]<-1
}

J[a1,a2]<-1+J[a1,a2]
J[a2,a1]<-1+J[a2,a1]
}

d<-apply(J,1,sum)
nn<-0*d
nn2<-0*d

for(i in 1:n){
a1<-d[i]
a2<-J1[i,]
a3<-seq(1,n,1)[a2==1]
a3<-d[a3]
nn[i]<-length(a3[a3>=a1])
nn2[i]<- nn[i]*(nn[i]-1)/2
}

res2[jj,]<-c(mean(nn),mean(nn2),mean(d))
print(jj)
}

### for CM, returns approximation to EN_n, EN2_n, ED_n
CM<-apply(res2,2,mean)
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dom Graphs with Prescribed Degree Distribution, Journal of Statistical
Physics, 124, 6, (2006)

Chung, F. and Lu, L., The average distances in random graphs with given
expected degrees, Proc. Natl. Acad. Sci. USA 99, 15879-15882 (2002)

Cohen, J., Graph twiddling in a mapreduce world, Computing in Science
and Engineering, 11, 4, 29-41, (2009)

Dorogovtsev, S.N., and Mendes, J.F.F., Evolution of Networks, Advances in
Physics, 51, 4, 1079-1187, (2002)
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